Radiometiry

- Image: two-dimensional array of 'brightness' values.
- Geometry: where in an image a point will project.
- Radiometry: what the brightness of the point will be.
- Brightness: informal notion used to describe both scene and image brightness.
- Image brightness: related to energy flux incident on the image plane:

IRRADIANCE

- Scene brightness: brightness related to energy flux emitted (radiated) from a surface.

RADIANCE

- Electromagnetic energy
- Wave model
- Light sources typically radiate over a frequency spectrum
- Φ watts radiated into 4π radians

Irradiance

- Light falling on a surface from all directions.
- How much?

- Irradiance: power per unit area falling on a surface.

$$
\text { Irradiance } E=\frac{d \Phi}{d A} \quad \text { watts } / \mathrm{m}^{2}
$$

Inverse Square Law

- Relationship between radiance (radiant intensity) and irradiance

R: Radiant Intensity
E: Irradiance
$\Phi:$ Watts
ω : Steradians

$$
\begin{gathered}
R=\frac{d \Phi}{d \omega}=\frac{r^{2} d \Phi}{d A}=r^{2} E \\
E=\frac{R}{r^{2}}
\end{gathered}
$$

Surface Radiance

- Surface acts as light source
- Radiates over a hemisphere

- Radiance: power per unit foreshortened area emitted into a solid angle

$$
L=\frac{d^{2} \Phi}{d A_{f} d \omega} \quad(\text { watts/m2 - steradian })
$$

Pseudo-Radiance

- Consider two definitions:
- Radiance:
power per unit foreshortened area emitted into a solid angle
- Pseudo-radiance power per unit area emitted into a solid angle
- Why should we work with radiance rather than pseudoradiance?
- Only reason: Radiance is more closely related to our intuitive notion of "brightness".

Lambertian Surfaces

- A particular point P on a Lambertian (perfectly matte) surface appears to have the same brightness no matter what angle it is viewed from.
- Piece of paper
- Matte paint
- Doesn't depend upon incident light angle.
- What does this say about how they emit light?

Computer Vision
 Lambertian Surfaces

Area of black box $=1$
Area of orange box = 1/cos(Theta) Foreshortening rule.

Lambertian Surfaces

Relative magnitude of light scattered in each direction. Proportional to cos (Theta).

Computer Vision
 Lambertian Surfaces

Area of black box $=1$
Area of orange box $=1 / \cos ($ Theta) Foreshortening rule.

Geometry

- Goal: Relate the radiance of a surface to the irradiance in the image plane of a simple optical system.
α : Solid angle of patch

Light at the Surface

- $\mathrm{E}=$ flux incident on the surface $($ irradiance $)=\frac{\mathrm{d} \Phi}{\mathrm{dA}}$

$$
\begin{aligned}
& \mathrm{i}=\text { incident angle } \\
& \mathrm{e}=\text { emittance angle } \\
& \mathrm{g}=\text { phase angle } \\
& \rho=\text { surface reflectance }
\end{aligned}
$$

Incident Ray

- We need to determine $\mathrm{d} \Phi$ and dA

Reflections from a Surface I

- $d A=d A_{s} \cos i$ foreshortening effect in direction of light source\}
- $\mathrm{d} \Phi=$ flux intercepted by surface over area dA
- $d A$ subtends solid angle $d \omega=d A_{s} \cos i / r^{2}$
- $\mathrm{d} \Phi=\mathrm{R} d \omega=R \mathrm{dA} \mathrm{s}_{\mathrm{s}} \cos \mathrm{i} / \mathrm{r}^{2}$
- $E=d \Phi / d A_{s}$

Surface Irradiance: E = R cos i/ r2

Reflections from a Surface II]

- Now treat small surface area as an emitter
-because it is bouncing light into the world
- How much light gets reflected?

- E is the surface irradiance
- L is the surface radiance = luminance
- They are related through the surface reflectance function:

$$
\frac{L_{s}}{E}=\rho(\mathrm{i}, \mathrm{e}, \mathrm{~g}, \lambda)
$$

Power Concentrated in Lens

$$
L_{s}=\frac{d^{2} \Phi}{d A_{s} d \omega}
$$

Luminance of patch (known from previous step)

What is the power of the surface patch as a source in the direction of the lens?

$$
\mathrm{d}^{2} \Phi=\mathrm{L}_{\mathrm{s}} \mathrm{dA} \mathrm{~A}_{\mathrm{s}} \mathrm{~d} \omega
$$

- In general:
- L_{s} is a function of the angles i and e.
- Lens can be quite large
- Hence, must integrate over the lens solid angle to get d Φ

$$
\mathrm{d} \Phi=\mathrm{dA} \mathrm{~S}_{\Omega} \int_{\Omega} \mathrm{L}_{\mathrm{s}} \mathrm{~d} \Omega
$$

Simplifying Assumption

- Lens diameter is small relative to distance from patch

$$
\begin{aligned}
& \mathrm{d} \Phi=\mathrm{d} A_{\mathrm{S}} \int_{\Omega} L_{\mathrm{S}} \mathrm{~d} \Omega \rightarrow \begin{array}{l}
\mathrm{L}_{\mathrm{S}} \text { is a constant and can be } \\
\text { removed from the integral }
\end{array} \\
& d \Phi=d A_{s} L_{s} \int_{\Omega} d \Omega \\
& =\frac{\text { Area of lens as seen from patch }}{\text { (Distance from lens to patch) }^{2}} \\
& =\frac{\pi(\mathrm{d} / 2)^{2} \cos \alpha}{(\mathrm{z} / \cos \alpha)^{2}}
\end{aligned}
$$

Putting it Together

$$
\begin{aligned}
d \Phi= & d A_{s} \int_{\Omega} L_{s} d \Omega \\
& =d A_{s} \cos e L_{s} \frac{\pi(d / 2)^{2} \cos \alpha}{(z / \cos \alpha)^{2}}
\end{aligned}
$$

- Power concentrated in lens:

$$
d \Phi=\frac{\pi}{4} L_{s} d A_{s}\left[\frac{d}{Z}\right]^{2} \cos e \cos ^{3} \alpha
$$

- Assuming a lossless lens, this is also the power radiated by the lens as a source.

Through a Lens Darkly

\square Image irradiance at $d A_{i}=\frac{d \Phi}{d A_{i}}=E_{i}$

$$
E_{i}=L_{s} \frac{d A_{s}}{d A_{i}} \frac{\pi}{4}\left[\frac{d}{Z}\right]_{\text {ratio of areas }}^{2} \cos e \cos ^{3} \alpha
$$

Patich ratio

$\frac{d A_{s} \cos e}{(Z / \cos \alpha)^{2}}=\frac{d A_{i} \cos \alpha}{(-f / \cos \alpha)^{2}} \| \frac{d A_{s}}{d A_{i}}=\frac{\cos \alpha}{\cos e}\left(\frac{Z}{-f}\right)^{2}$

The Fundamental Result

\square Source Radiance to Image Sensor Irradiance:

$$
\begin{gathered}
\frac{d A_{s}}{d A_{i}}=\frac{\cos \alpha}{\cos e}\left(\frac{Z}{-f}\right)^{2} \\
E_{i}=L_{s} \frac{d A_{s}}{d A_{i}} \frac{\pi}{4}\left[\frac{d}{Z}\right]^{2} \operatorname{cose} \cos ^{3} \alpha \\
E_{i}=L_{s} \frac{\cos \alpha}{\cos e}\left(\frac{Z}{-f}\right)^{2} \frac{\pi}{4}\left[\frac{d}{Z}\right]^{2} \operatorname{cose} \cos { }^{3} \alpha \\
E_{i}=L_{s} \frac{\pi}{4}\left[\frac{d}{-f}\right]^{2} \cos ^{4} \alpha
\end{gathered}
$$

Radiometry Final Result

$$
\mathrm{E}_{\mathrm{i}}=\mathrm{L}_{\mathrm{s}} \frac{\pi}{4}\left[\frac{\mathrm{~d}}{-\mathrm{f}}\right]^{2} \cos ^{4} \alpha
$$

- Image irradiance is a function of:
- Scene radiance L_{s}
- Focal length of lens f
- Diameter of lens d
- f/d is often called the 'effective focal length' of the lens
- Off-axis angle α

$\operatorname{Cos}^{4} \alpha$ Light Falloff

Top view shaded by height

